
Fluid Mechanics
Prof. Subashisa Dutta

Department of Civil Engineering
Indian Institute of Technology Guwahati

Lecture No. – 09
Conservation of Momentum

Welcome all of you to fluid mechanics course. Today, I am going to deliver lecture on

conservation of momentum. As you know, in the last class we discussed about conservation

of mass. Also, we have solved few problems based on the conservation of mass.

(Refer Slide Time: 00:57)

Basically, we have been following the Reynolds transport theorem as a basic concept to apply

the setup of the system into physical equations to the control volume level. And, then, at the

control column level, we have approximation of extensive and intensive properties and as of

now we have derived mass conservation equations. Today, I am going to derive conservation

of linear momentum.

Again, I can tell you, book wise, the Cengel and Cimbala, The Fluid Mechanics Fundamentals

and Applications. This book has given very clearly the illustrations of this concept of Reynolds

transport theorem, the conservation of mass, conservation of linear momentum, angular

momentum, and the energy concept which is more descriptive type and that is why it gives

enough to a student to understand this concept.

(Refer Slide Time: 02:05)
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So, now let us come back to the last class what we studied. As I told you, we discussed about

the Reynolds transport theorem for conservation of mass and when we apply this conservation

of mass to the Reynolds transport theorem, we have two basic assumptions, that is, with respect

to time is it a steady or unsteady. So, the steady we do the approximations of many fluid flow

problems which are steady problems.

Then, with respect to density change or the variations of the density, we divide it, flow is

compressible or incompressible. So, we can have two types of approximations, steady

compressible, steady incompressible. So, when you have the steady assumptions, you can

remember that the component of Reynolds transport theorem of time, differentiate components

become 0 or the volume integral component part of the Reynolds transport theorem becomes

0. So, it becomes a very easy problem.

You have only this surface integral component and it is equal to 0. So, that is a very simplified

case. And when the density is a constant, that means, what happens is densities comes out

from the equations which makes us only the scalar product between velocity and the normal

vectors, that is what is a scalar quantity. We do surface integrals with respect to area.

So, thus, the problems becomes too simple as compared to if you have compressible flow. So,

when you have a steady incompressible flow, most of the case what we consider for flow

devices or engineering applications, we can consider steady incompressible flow, then the

problems becomes very simplified when you apply for Reynolds transport theorem. As you
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remember, there are starting with tanks with multiple inlets, the estimation of seepage losses

in laboratory flumes. Today, I will repeat the problem, how to do these things.

(Refer Slide Time: 04:45)

Let me come back to today’s lectures, what I will cover. Again, I will give you a few examples

on conservation of mass. Then, we will go to write the linear momentum equations for fixed

control volumes or moving control volumes. Then, what are the simplifications that need to

be done before applying linear momentum equations. That is what we will discuss in terms of

non-consideration of atmospheric pressures.

Then, what is called the momentum flux correction factor, how we use it, that is what I will

discuss. Then, I will show the impact of jet experiment, then, I will summarise it.

(Refer Slide Time: 05:40)
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So, before going to these things, you could have heard of this hydro projects, one is one of the

largest projects in our country, which is Bhakra Nangal project. If we look at this Bhakra

Nangal project, it has a reservoir which is about 88 kilometers long and 8 kilometers wide.

And total water storage capacity is about 9.34 kilometer cube, so, huge amount of water storage

if you can see in this Google earth imagery.

The dam is located here which is a concrete dam and having a height of 207 meters

approximately, and the length is 500 meters, and width varies from at the top 9 meters, as it

goes down the base becomes wider and wider which will be 191 meters. So, what I am to say

is that, if you look at this project which was initiated or commissioned early in 1950s and 60s,

generating and installing hydro power projects about 1300 megawatt power.

So, what you are looking is basic fluid mechanics knowledge. That is what is used to design

this hydropower project. So, the basic fluid mechanics what we have that is what is used way

back in 1950s to design this Bhakra Nangal project which is one of the successful projects in

our country. So, if you look at this way, we will take a lot of hydro power projects and we will

tell how to estimate the power potentials, how to estimate what could be the turbine speed, all

we can do it.

It is not a difficult task if you have knowledge of fluid mechanics. So, only the knowledge of

fluid mechanics and civil engineering excellence is helping us to generate the power at the

order of 1300 megawatt powers without polluting the environment. So, the hydropower

projects they have the strength. Also, some disadvantages are there, but they are the projects

that are implemented and those project components we can understand if we understand fluid

mechanics well. That is my point for you.

(Refer Slide Time: 08:10)
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For this, let us come back to the example. Last time we discussed this problem. Again I am

going to repeat it just for more detailed understanding of these problems. Let us consider that

there is a soil matrix, that means there are soils that are there which is having porous space,

and in that soil component we have the flow. The water is coming, it is Q1, Q2, and Q3 is

going out. And at the bottom, there is percolation or seepaging.

[The soil matrix is filled with water by the two one-dimensional inlets and one outlet with the

downwards percolation. Find out the amount of percolation from the given data.

Q1 = Q2 = 0.1 lit/sec, Q3 = 0.05 lit/sec and q = f(s) = KS+0.1 

where S is storage and K is hydraulic conductivity]

The water is coming out from the soil matrix. In the porous space of the soil water is there,

that is what is coming out as seepage water to here. Here, this q is a function of storage within

the soil matrix and the K is a constant proportional or we can call hydraulic conductivity. So,

Q1 is given for this study, Q2 is given, Q3 is given. So, I have taken this is my control volume.

If you look at the yellow colors it is the control volume.

If that is the control volume, before applying this conservation of mass I should classify the

problem. The problem is what nature, it is one dimensional flow. The flow what we can

consider across this control surface is one-dimensional.

Flow classification:

One dimensional

Unsteady

Laminar
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Fixed control volume

Incompressible flow

Data Given:

Q1 = 0.1 lit/sec

Q2 = 0.1 lit/sec

Q3 = 0.05 lit/sec

q = f(s) = KS+0.1

(Refer Slide Time: 10:24)

Now, I have to simplify the problem. I have to apply under this control volume the basic mass

conservation equations. It is unsteady equation with two inlets and one outlet. That is what

you can do, Q1 and Q2 are inlets, Q3 is outlet. Then, the outlet is a seepage part which is going

out which will be in terms of S. If you look, when I consider this is the control volume having

Q1, Q2, the inflows, and Q3 is outflow, and q is also outflow, which is a functions with respect

to S, the storage.

Applying the control volume approach, equation for the unsteady flow with two inlet and one

out let




 ∀


          0

The control volume’s K is 0.1 which unit will be litre per second. Then, I just apply the

unsteady flow equations of convergence of mass. This is the volume integrals part if you

remember it, and since it is a one-dimensional part we have the negative for the inflows and
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positive for the outflows. So, you can find out this Q3s and all. All are the mass flow in, mass

flow out, and that is the integration. And this part is the storage, S.




       




 0.1 0.1 0.05    0.1  0.05 

So, dS by dt, Q1 plus Q2, and this is just rearrangement of this and substituting this value we

will get the dS dt is these functions. And we can integrate it and finally get a relationship

between d and S as K is the constant, is equal to C. So, if you have the boundary conditions

we can determine the C value, then we can know what is the function of S, how the S varies

with respect to the time. That is our problem.




0.05  
  

 
1

ln0.05    

So, that way, if you look, very complex problems like this, when you have a soil matrix and

porous structure and you have the flow of Q1, Q2 inflows, and outflow is there, the seepage is

a function of how of water storage within the soil matrix. We can apply a simple mass

conservation equation for this control volume. Then we can integrate it to get what is the

function of S with respect time and that is what will give us from this. So, this is about the

problem. Again, I solved it for you.

(Refer Slide Time: 13:21)

So, now, let us come to example five which is the GATE 2006 civil engineering part. In that

problem the velocity field is given. If you see this, the scalar component of the velocity field
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in which there is a component of lambda is unknown to us, okay? Density also varies with

respect to the time. That means it is unsteady problems. And the velocity fields are given.

[Velocity field for a flow is given by ⃗  5  6  7̂  6  5  9̂  3  2  

and density varies as   exp2

In order mass is conserved the value of λ is

(GATE 2006, Civil) ]

And here that mass is conserved, the point is that mass is conserved, then what could be the

value of lambda. That is what will be different. So, that means what we will do is we will

apply the mass conservation equations and once that mass conservation equation is satisfied,

from that mass conservation equation we will compute what will be the lambda value. That is

the problem here. So, let me classify the problem.

Flow classification:

One dimensional

Unsteady

laminar

Fixed control volume

Compressible

That means it is some sort of the volume like this, you have a dS like this. So, applying this

control volume approach, equations for unsteady flow, you will have this component and this

component which already we derived earlier. Let me put it this form, okay?

Applying the control volume approach, equation for the unsteady flow



∀

∀   ⃗ .


 0







∀     ⃗ 


∀ 0

(Converting area integral to volume integral using - Green’s formula)

The time derivative part of the control volumes that is what we will have this part. See, if you

look this surface integrals, if I follow this Green’s formula, these surface integrals can be

converted to volume integrals in terms of delta operators, okay? If you remember this Green’s

formula, we can convert this surface integral into the control volume levels having delta dot

products. That is the concept we could have known from the mathematics point of view.

(Refer Slide Time: 15:45)
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Now, if I have that part and if you do the integral part, I can go out.




   ⃗   0

Then, finally, the equation becomes this because when you do integration over that, that is

common, we can take it out.


















 0




  5  5    0

2  5  5    0

  8

Why, this u, v, w are scalar component, you can get this component as this one, okay, Finally,

I get these relations here, and this relation will finally give me the lambda value which is equal

to minus 8. So, this is the problem that we solved. So, basically, this equation is conservation

of mass, what we have applied.

But since the velocity vectors are there which is having three dimensional velocity vectors and

the density is a function of the time, so, we have applied it as bringing to this level. Then, we

have solved for the lambda value.

(Refer Slide Time: 17:09)
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Now, we take another example which is given in GATE 2012 civil engineering specialization.

There it is a very simple problem, like what is given in this diagram. The pipe is there and

there is a joint which is called a T-joint like this. P is inflow that is coming. Q is going out

from this. R is going from this out. The pipes is having branching of P, Q, R. The diameters

are given. The velocities V P and V Q are given. V R to be estimated which is very simplified

problem. You can see that this problem is one-dimensional, steady.

[Find the velocity of flow in branch pipe “R” with the following data

Pipe Branch P: diameter (DP) = 4m, Velocity VP = 6 m/s

Pipe Branch Q: diameter (DQ) = 4m, Velocity VQ = 5 m/s

Pipe Branch R: diameter (DR) = 2m, Velocity VR = ?]

Flow classification:

One dimensional

Steady

Laminar

Fixed control volume

Incompressible flow

Assumptions:

Circular pipes are full

Velocity is given. The circular pipes are full. The flow could be laminar or turbulent, okay?

We do not know it. Fixed control volume and incompressible. So, this is a very simple

problem. Looking at this we will just apply the control volume and try to find out what will be

the mass. Inflow is coming into this and going out. Basically, if you try to remember mass in
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plus mass per unit time coming in should be equal to mass inflow from going out for steady

problems. So, being a steady problem, what we have.

Data Given:

DP = 4m

VP = 6 m/s

DQ = 4m

VQ = 5 m/s

DR = 2m

VR = ? m/s

The mass inflow what is coming, rate of mass inflow is what is coming in, it should be equal

to rate of mass inflow going out from this control volume, that is the thing. So, in this case,

because there are two outlets, sum of this two masses outflows going out from this, that is equal

to mass inflow that is coming in, mass flow rate that is coming in, the mass per unit time that

is coming in.

So, that way you can see that if you have  Q in, a very simple,  Q in will be rho Q1 out plus

Q2 out. That is the basic concept. Since it is same density, that means you have Q in is equal

to Q1 out or Q2 out to outlet. So, sum of the two volumetric discharge is equal to the inflow

volumetric discharge what is going. That is very simple problem. Only, you have to compute.

Since the velocity is given, so Q will be Q into V.

That is the basic concept, area into velocity is Q, average velocity is given to us, so we can

compute the discharge and we just applied the Q in is equal to Q1 out plus Q2 out.

(Refer Slide Time: 20:00)
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So, numerically that is what is coming. For the steady flow this becomes zero. So, you have

in and out. As you know, this in will be negative and both out will be positives, and substituting

these Q values for all the cases, with V R unknown. So finally, substituting to this equations

will give V R equal to 4 m/s. So, very simple form of solving the pipe problems where you

have one inlet and two outlets.

Appling the control volume approach, equation for the steady flow with one inlet and two out

let

0




 ∀


        0

      0

 
1
4

46 ⁄   75.40 ⁄

 
1
4

45 ⁄   62.83 ⁄

 
1
4

2  ⁄   3.14   ⁄

As it is incompressible flow, the density is constant, so you just do volumetric flux coming in

is equal to the sum of the volumetric flux going out from the control volume. That is what we

commit. If you do not remember that, very simple way you remember it is that the mass influx

or rate of change of mass with respect to time coming into the control volume should be equal

to the rate of the mass going out from the control volume, that should be equal.

      0
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75.40  62.83  3.14   0

  4 m/s

Mass influx and outflux rate should be equal. That is the concept if we consider for steady

flow conditions.

(Refer Slide Time: 21:25)
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Now, let us come to derive the linear momentum equations, okay? So, we are going for solving

these flow problems for linear momentum equations. That means we will consider the control

volumes, we have considered the control volume like this. So, each control volume has the

control surface. It could be a very simple tetrahedral type of structure or you can have very

complex, it does not matter what could be the shapes, okay?

It can have simple shapes or it can have very complex shapes. So, if you look at that, over that

surface what will happen is you will have normal vectors, let dA be the surface area, over that

is the normal vector to the surface area. So, you will have the surface which will have two

types forces going to act on this. One is the body force, that because of the mass of the control

volume, how much of body force is giving, say, gravity point of view, or other forces we do

not consider here is electrical or magnetic field point of view.

So, basically, because of the control volume mass, how much of weight you are getting, how

much of body force you are getting, that is what will be the body force. And along the surface

the forces that is acting that is surface force. So, you have two force components you get for a

control volume. One is the body force and the other is surface force. The body force acting in

the entire body, that is what is most often the gravity.

The other electric and magnetic fields are not considered for this case, but some cases we can

consider it. The other is the surface force acting on the control surface. So, the forces acting

on the control surface will be the pressure force, the viscous force, and any reaction forces,
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okay. Like a control surface is cutting through a surface, a rigid part. So, there could be a

reaction force that will be there.

⃗ ⃗ ⃗

So, that way if you look, if we take a control volume there results to be two types of forces.

One is the body force which acts throughout the entire body, that depends on the mass present

within the control volume. Another is that over the surface of control volume there will be the

force components, those forces are due to pressure, viscous forces because of viscosities of the

fluid flow systems, there will be the viscous force component, and also reaction forces or the

other force component comes in.

Now, let me find out what will be the gravity force, which is a very easy thing. If I take a small

element dV, I will have the weight of these small control volumes, it will be , g, and dV. So,

look at the unit of each component, if you can understand that. dV will be the mass, d V is

here. Look for the volume. Mass into g is the gravity force component. Here, the gravity

force component, we can consider g is a vector quantity of any direction.

⃗  ⃗∀

⃗  ⃗

But you can align with, if y is of direction, then the K notation we can use to define the g vector

component, okay? So, basically, if I consider the total control volumes, then the sum of the

force or volume integrals of this component  g d V that will be the gravity part or indirectly

this is mass of the control volume into g, g is the acceleration due to gravity vector component.

And many of the times we align the z-axis and g is downward, then we use the negative, not

the scalar quantity, as a vector representation.

⃗   ⃗∀


 ⃗

But if consider different orientation of the control volume, then you can consider g is a vector

quantity, it has a scalar component of gx, gy, gz in three respective scalar direction of x, y, and

z.

(Refer Slide Time: 26:18)
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Now, let us come back to what type of force are acting. Surface forces as we discussed earlier

will be there. Any surface force will have the normal component as well as the tangential

component. Let us take this figure which is very interesting figure, showing to you. This is

the control surface having the area of da. It is normal vector, n is this part, it is a normal vector.

So, if your force acting on this is having an angle, then this force can have two components.

One is for the component for the normal, another is the tangential component, okay? So, the

control surface can be considered in any orientation, okay? Over that you have a normal vector

which is normal to the control surface there. So, if your force is acting at that point having a

different angle, then what will happen is you will have a normal component and also the

tangential component.

If you want the result as the x and y component, that is your Cartesian coordinates, that is what

is different here. One is the Cartesian coordinate level resolving the force vector component

to a scalar component in x and y direction. Another one is we are resolving this force

component into the normal or the tangential component. That is what is illustrated here, how

you can have two different components.

(Refer Slide Time: 28:13)
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